Part Number Hot Search : 
MCP18480 FRE260R AP3102L 1N410 CPH5703 GSC2146 40800 9154A
Product Description
Full Text Search
 

To Download AAT1102 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Advanced Analog Technology, Inc.
AAT1102 (BIN2)
Product information presented is current as of publication date. Details are subject to change without notice
ADVANCED PWM DC-DC CONVERTER WITH INTERNAL SWITCH AND SOFT-START
FEATURES
1.6A, 0.23, Internal Switch High Efficiency: 90% Adjustable Output: VDD to 15V Adjustable Frequency: 640kHz or 1.3MHz Wide Input Range: +2.6V to +5.5V Low Shutdown Current: 0.1A
GENERAL DESCRIPTION
The AAT1102 is a step-up DC-DC converter with a 1.6A, 0.23 internal switch. Equipped with an external compensation pin, this device offers user flexibility in determining loop dynamic and adjusting operating frequency. AAT1102 also allows the use of small, low equivalent resistance (ESR) ceramic output capacitor, and it's capable of converting a standard input of 3.3V to multiple outputs of 8V, - 8V , and 23V. Furthermore, filtering and loop performance are facilitated and enhanced by a high switching frequency of either 640 kHz or1.3MHz. The AAT1102's versatility comes with a power-smart design. A soft-start programmed with an external capacitor that sets the input current ramp rate, reduces the current consumption to 0.1A in shutdown mode. When operating, a mere 2.6V input yields an impressive output voltage as high as 15V. High switching frequency and economical design allow AAT1102 to be less than 1.1mm high. Its compact 8-pin MSOP package and superior performance make it an ideal part for biasing TFT displays.
Programmable Soft-Start Small 8-Pin MSOP Package
PIN CONFIGURATION
TOP VIEW
EO
1 2 AAT1102 3 4
8-Pin MSOP
8 7 6 5
SS
IN
FREQ
SHDN
VDD
GND
SW
-
- - Advanced Analog Technology, Inc. -
Page 1 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
PIN DESCRIPTIONS
PIN NAME FUNCTION
1 2
EO IN
Compensation Pin for Error Amplifier Feedback Pin with a Typical Reference Voltage of 1.24V, VOUT = IN(1+
R1 ) R2
3 4 5 6 7 8
SHDN GND SW VDD FREQ SS
Shutdown Control Pin. The Device Will Turn Off When SHDN is Low Ground Switch Pin Power Supply Pin Frequency Select Pin. Switch Oscillator Frequency to 640kHz When FREQ is Low, and 1.3MHz When FREQ is High Soft-Start Control Pin. No Soft-Start When the Pin is Left Open
ABSOLUTE MAXIMUM RATINGS
PARAMETER SW to GND IN, SHDN, VDD , FREQ to GND SS, EO to GND SYMBOL VALUE - 0.3 to +18
- 0.3 to +6 - 0.3 V to ( VDD + 0.3V)
UNIT V
V V A mW

RMS SW Pin Current Continuous Power Dissipation ( TC = + 70 ) 8-Pin MSOP (De-Rate 4.1 mW / above +70) Operation Temperature Range Storage Temperature Range
I SW Pd TC
1.2 330
- 30 to +85 - 45 to +125
Tstorage
TJ TL
Junction Temperature Range Lead Temperature (Soldering for 10 seconds)
+150 +300
Note: 1. Absolute Maximum Ratings are threshold limit values that must not be exceeded. 2. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. 3. These are stress ratings only and do not necessarily imply functional operation below these limits.
- - - Advanced Analog Technology, Inc. -
Page 2 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
ELECTRICAL CHARACTERISTICS
( VDD = SHDN = 3V ,
FREQ = GND, TC =0 o C to 85 o C , unless otherwise specified. Typical values are
at TC = +25o C )
PARAMETER SYMBOL
VDD
CONDITIONS
MIN
TYP
MAX UNITS
Input Supply Voltage Range
VDD Under Voltage Lockout
2.6 When VDD is rising, typical hysteresis is 40mV; SW 2.25 remains off below this level VIN = 1.3V, not switching VIN = 1.0V, switching
SHDN =
5.5 2.38 0.21 1.2 0.1 2.52 0.35 5.0 10.0
V V mA
A
UVLO
I DD
Quiescent Current Shutdown Current
ERROR AMPLIFIER PARAMETER
I SC
GND
SYMBOL
CONDITIONS
MIN
TYP
MAX UNITS
Feedback Voltage
VDD Input Bias Current
VIN I IN
Feedback-Voltage Line Regulation Transconductance Voltage Gain
OSCILLATOR PARAMETER SYMBOL
f OSC
gm
Level to produce VEO = 1.228 1.240 1.24V VIN= 1.24V 0 Level to produce VEO = 1.24V, 0.05 2.6V < VDD < 5.5V I = 5 A 70 105 1,500
1.254 40 0.15 240
V nA %/V
A
AV
/V V/V
CONDITIONS
MIN
TYP
MAX UNITS
Frequency Maximum Duty Cycle
D MAX
FREQ = GND FREQ = VDD FREQ = GND FREQ = VDD
540 640 1,100 1,320 79 85
85
740 1,600 92
kHz %
- - - Advanced Analog Technology, Inc. -
Page 3 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
ELECTRICAL CHARACTERISTICS
( VDD = SHDN = 3V , FREQ = GND, TC =0 C to 85 C , unless otherwise specified. Typical values are at TC = +25o C )
o o
N-CHANNEL SWITCH PARAMETER SYMBOL
I LIM R ON
CONDITIONS
VDD = 1V, Duty Cycle = 65% I SW = 1.2A
MIN
TYP MAX UNITS
Current Limit On-Resistance Leakage Current
SOFT-START PARAMETER
1.2
1.6 0.23 0.01
2.3 0.50 20.00
A
A
I SWOFF
VSW = 15V
SYMBOL
CONDITIONS
MIN
TYP
MAX UNITS
Reset Switch Resistance Charge Current
CONTROL INPUTS PARAMETER SYMBOL
VIL VIH
VSS = 1.2V
1.5
4.0
300 7.0
A
CONDITIONS
MIN
TYP
MAX UNITS
Input Low Voltage Input High Voltage Hysteresis FREQ Pull-Down Current SHDN Input Current
SHDN, FREQ; VDD = 2.6V to 5.5V SHDN, FREQ; VDD = 2.6V to 5.5V SHDN, FREQ
0.3 VDD 0.7 VDD 0.1 VDD 1.8 5.0 0.001 9.0 1.000
V V V
A A
I FREQ
I
SHDN
- - - Advanced Analog Technology, Inc. -
Page 4 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
Typical Operating Characteristics
95 90
95 90
EFFICIENCY (%)
80 75 70 65 60 55 50 1 3 5 7 9 20 40 60 80 100 150 200
EFFICIENCY (%)
85
85 80 75 70 65 60 55 50 1 3 5 7 9 20 40 60 80 100 150 200
STEP-UP REGULATOR OUTPUT VOLTAGE vs.LOAD CURRENT(VMAIN=8.3V)
8.4
8.4
8.3
8.3
8.2
8.2
8.1 1 3 5 7 9 20 40 60 80 100 150 200
8.1 1 3 5 7 9 20 40 60 80 100 150 200
LOAD CURRENT(mA)
950 850
1.4
INDUCTOR CURRENT(mA)
2.6 2.8 3 3.3 3.8 3.9 4.2 4.5 4.8 5
750 650 550 450 350 250 150 50
1.2 1 0.8 0.6 0.4 0.2 0 2.7 3 3.5 4 4.5
- - - Advanced Analog Technology, Inc. -
Page 5 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
Fig. 1 TYPICAL APPLICATION CIRCUIT
VDD 2.6V TO 5V
ON/ OFF
- - - Advanced Analog Technology, Inc. -
Page 6 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
Fig. 2 BLOCK DIAGRAM
- - - Advanced Analog Technology, Inc. -
Page 7 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
Fig. 3 AAT1102 IN A SEPIC CONFIGURATION
VDD 2.6V TO 5V
- - - Advanced Analog Technology, Inc. -
Page 8 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
Fig. 4 MULTIPLE-OUTPUT TFT LCD POWER SUPPLY
- - - Advanced Analog Technology, Inc. -
Page 9 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
Inductor selection
VD I L ( peak ) = I IN + IN , where D is duty cycle 2 Lf s I V And I IN = o , D = 1 - IN , 1- D Vo The inductor current rating must be greater than
Power Stage Transfer Functions
The duty to output voltage transfer function T p is: ( s + w )( s - w z 2 ) vo = T p 0 2 esr 2 d s + 2wn s + wn
- rc 1 , wesr = (1 - D )(RL + rc ) Crc
T p ( s) =
I L(peak) .
Loop Compensation Design
Where T p 0 = VO
And
(1 - D )2 RL + r LC (RL + rc ) 2 C[r (RL + rc ) + RL rc (1 - D ) ] + L = , 2 2 LC (RL + rc )[r + (1 - D ) RL ]
wz 2 = RL (1 - D ) - r , wn = L
2
r = rL + DrDS + (1 - D) RF
rL is the inductor equivalent series resistance, rc
is capacitor ESR, RL is the converter load resistance, C is output filter capacitor, rDS is the
Fig.1. Closed-current loop for boost with PCM
transistor on-resistance, and R F is the diode forward resistance. The duty to inductor current transfer function T pi is:
T pi ( s) =
il s + wzi = T pi 0 2 2 d s + 2wn s + wn VO (RL + 2rc ) 1 , wzi = C (RL / 2 + rc ) L(RL + rc )
Where Tpi 0 =
Fig.2. Block diagram of boost converter with PCM
- - - Advanced Analog Technology, Inc. -
Page 10 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
Current Sampling Transfer Function
Error voltage to duty transfer function Fm is:
2 f s s 2 + 2wn s + wn d Fm ( s ) = = vei T pi 0 Rcs s (s + wzi )(s + wsh )
2 2
= g m Rc
s + w c 12 f s T p 0 x s R cs T pi 0
2
(
)
(s + wz1 )(s - wz 2 ) (s + wzi )( s 2 + sws h + 12 f s 2 )
Where =
V FB , Vo
Where wsh =
3ws 1 - M - Ma , , = 2 1+ M1 + M a
ws = 2 . f s
The compensator transfer function
Therefore, Fm depends on duty to inductor current T ( s ) = v c = g R s + wc , where w = 1 c mc c Rc C c s v fb transfer function T pi , and f s is the clock switching frequency; Rcs is the current-sense amplifier transresistance. For the boost converter M 1 = V IN / L and M 2 = ( VO - V IN )/ L For AAT1102 , Rcs = 0.275 V/A, M a is slope compensation, M a =0.8x106. The closed-current loop transfer function Ticl
12 f s s 2 + 2wn s + wn x Rcs T pi 0 (s + wzi )(s 2 + wsh s + 12 f s 2
2 2
O
c
_ +
Comparator
is:
Ticl ( s ) =
(
)
)
Fig.3. Voltage loop compensator Compensator design guide: 1 fs 2
The Voltage-Loop Gain With Current Loop Closed
The control to output voltage transfer function Td is: v ( s) Td ( s ) = o = Ticl ( s )T p ( s ) vc ( s ) The voltage-loop gain with current loop closed is:
Lvi ( s ) = Tc ( s )Td ( s )
1. Crossover frequency f ci < 2. Gain margin>10dB 3. Phase margin>40
4. The Lvi ( s ) = 1 at crossover frequency, Therefore, the compensator resistance, Rc is determined by:
- - - Advanced Analog Technology, Inc. -
Page 11 of 18 V5.0
Advanced Analog Technology, Inc.
Rc =
(RL + 2rc ) Vo 2f ci CRcs VFB kg m r (1 - D )RL - (1 - D )
AAT1102 (BIN2)
VFB is equal to reference voltage, V REF . V REF =1.24V, k is the correct factor, and k = (6 - 8)
5. The output filter capacitor is chosen so C . RL pole cancels Rc . C c zero
Rc C c = Cc =
C RL + rc , and (1 - 3) 2
Fig.5. Bode diagram using Matlab simulation
C RL + rc (1 - 3)Rc 2 Example: VIN =5V, VO =9.6V, I O =250mA, f s =600 kHz, VFB =1.25V, L = 6.8uH , g m = 105uS , Rcs = 0.275 V/A, rL = 0.1 , rDS = 0.23 , rC = 50m , k =7
R F = 1.4 , f ci = 21.4 kHz, C c =1.3nF, Rc = 27k , C =4.7uF
Fig.4. CH1: PWM waveform, CH2, v p - p for Vo
- - - Advanced Analog Technology, Inc. -
Page 12 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
PACKAGE DIMENSION MSOP-8
- - - Advanced Analog Technology, Inc. -
Page 13 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
PACKAGE DIMENSION (CONT.) MSOP-8
- - - Advanced Analog Technology, Inc. -
Page 14 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
TAPE AND REEL
PACKING METHOD: 2,500PCS/REEL, 1 REEL/BOX
- - - Advanced Analog Technology, Inc. -
Page 15 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
TAPE AND REEL (CONT.)
PACKING METHOD: 2,500PCS/REEL, 1 REEL/BOX
- - - Advanced Analog Technology, Inc. -
Page 16 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
PART MARKING
MSOP8 TOP MARKING
1102 MAAC
MSOP8 BACK MARKING
YYWW
- - - Advanced Analog Technology, Inc. -
Page 17 of 18 V5.0
Advanced Analog Technology, Inc.
AAT1102 (BIN2)
ORDERING INFORMATION
- - - Advanced Analog Technology, Inc. -
Page 18 of 18 V5.0


▲Up To Search▲   

 
Price & Availability of AAT1102

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X